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1. Introduction

It is well-known in the context of open String Field Theory (SFT) (see [1]–[3] for review)

that in the case of abelian Lie algebra, the Yang-Mills equations can be obtained from the

following relation:

Q|φ〉 = 0, (1.1)

where Q is the BRST operator of open String Theory [4, 5] and the state |φ〉 corresponds

to the operator of ghost number 1:

φ(0) = cAµ(X)∂Xµ − ∂c∂µAµ(X). (1.2)

Similarly, the gauge transformation of this abelian gauge field: Aµ → Aµ + ∂µλ can be

obtained by means of the transformation

|φ〉 → |φ〉 + Q|λ〉, (1.3)

where |λ〉 is a state corresponding to the appropriate operator of ghost number 0. However,

it remains unclear, how to extend this cohomological structure to the nonabelian case. In

papers [6, 7], the nonabelian versions of Yang-Mills actions were obtained from the effective

actions of canonical open SFT [8] and WZW-like superSFT [9] correspondingly. In this

paper, we follow another way: we enlarge the space of states associated with the gauge

transformations and gauge fields by the appropriate states corresponding to the operators

of ghost number 2 and 3, which altogether form a space of a short chain complex with

respect to the operator Q. Then, we consider its tensor product with some Lie algebra g

(obviously, this will not spoil the structure of this chain complex, since the BRST operator
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acts trivially on g). After that, we explicitly construct the graded antisymmetric bilinear

and 3-linear operations on this space. We show that together with the BRST operator they

satisfy the relations of a homotopy Lie superalgebra (this is a supersymmetric generalization

of [10, 11]). The bilinear operation appears to be that considered in [12] at the lowest

orders in α′. After these constructions we show that the Yang-Mills equations correspond

to the generalized Maurer-Cartan equation associated with this homotopy algebra, and

the associated Maurer-Cartan symmetries correspond to the gauge symmetries of Yang-

Mills. It is worth noting that the equations of motion in 10-dimensional supersymmetric

Yang-Mills theory was already formulated in the Maurer-Cartan form for some differential

graded Lie algebra (however, in the different context) in [13].

2. Generalized Maurer-Cartan form of Yang-Mills equations.

2.1 Notation and conventions

CFT of open strings and BRST operator. We consider the open String Theory in

D-dimensional space on the disc conformally mapped to the upper half-plane, and we fix

the operator products between the coordinate fields as follows [5]:

Xµ(z1)X
ν(z2) ∼ −ηµν log |z1 − z2|

2 − ηµν log |z1 − z̄2|
2, (2.1)

where ηµν is the constant metric in the flat D-dimensional space either of Euclidean or

Minkowski signature, such that the mode expansion is

Xµ(z) = xµ − i2pµ log |z|2 + i
n=+∞∑

n=−∞,n 6=0

an

n
(z−n + z̄−n) (2.2)

[xµ, pν ] = iηµν ,

[aµ
n, aν

m] = ηµνnδn+m,0. (2.3)

We note that we put usual α′ parameter equal to 2 [5]. We also give the expression for the

BRST operator [4, 5]:

Q =

∮
dz(cT + bc∂c), T = −1/2∂Xµ∂̄Xµ, (2.4)

where normal ordering is implicit and b, c are the usual ghost fields of conformal weights

2 and −1 correspondingly with the operator product

c(z)b(w) ∼
1

z − w
. (2.5)

We define the ghost number operator Ng by

Ng = 3/2 + 1/2(c0b0 − b0c0) +

∞∑
n=1

(c−nbn − b−ncn). (2.6)

The constant shift (+3/2) is included to make the ghost number of the SL(2, C)-invariant

vacuum state |0〉 be equal to 0.
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Bilinear operation and Lie brackets. In this paper, we will meet two bilinear op-

erations [·, ·], [·, ·]h. The first one, without the subscript, denotes the Lie bracket in the

given Lie algebra g and the second one, with subscript h, denotes the graded antisymmetric

bilinear operation in the homotopy Lie superalgebra.

Operators acting on differential forms. We will use three types of operators acting

on differential forms (possibly Lie algebra-valued). The first one is the de Rham operator

d. The second one is the Maxwell operator m, which maps 1-forms to 1-forms. Say, if A is

1-form, then mA = (∂µ∂µAν −∂ν∂µAµ)dxν , where indices are raised and lowered w.r.t. the

metric ηµν . The third operator maps 1-forms to 0-forms, this is the operator of divergence

div. For a given 1-form A, divA = ∂µAµ.

2.2 BRST short chain complex

Let’s consider the following states

ρu = u(x)|0〉, φA = (−ic1Aµ(x)aµ
−1 − c0∂µAµ(x))|0〉,

ψW = −ic1c0Wµ(x)aµ
−1|0〉, χa = 2c1c0c−1a(x)|0〉 (2.7)

corresponding to the operators

u(X), cAµ(X)∂Xµ − ∂c∂µAµ(X), c∂cWµ(X)∂Xµ, c∂c∂2ca(X), (2.8)

associated with functions u(x), a(x) and 1-forms A = Aµ(x)dxµ,W = Wµ(x)dxµ. It is

easy to check that the resulting space, spanned by the states like (2.7), is invariant under

the action of the BRST operator, moreover the following proposition holds.

Proposition 2.1. Let the space F be spanned by all possible states of the form (2.7).

Then we have a short chain complex:

0 → C
id
−→ F0 Q

−→ F1 Q
−→ F2 Q

−→ F3 → 0, (2.9)

where F i (i=0,1,2,3) is a subspace of F corresponding to the ghost number i and Q is the

BRST operator (2.4).

Proof. Really, it is easy to see that we have the following formulas:

Qρu = 2φdu, QφA = 2ψmA, QψW = −χdivW, Qχa = 0. (2.10)

Then the statement can be easily obtained.

Remark. From (2.10), one can see that the first cohomology module H1
Q(F) can be

identified with the space of abelian gauge fields, satisfying the Maxwell equations modulo

gauge transformations.

Now, we introduce the BRST complex which will play the main role in further con-

structions. Let’s consider some Lie algebra g and take a tensor product of the complex

(2.9) with g. In such a way, we get another chain complex:

0 → g
id
−→ F0

g

Q
−→ F1

g

Q
−→ F2

g

Q
−→ F3

g → 0, (2.11)
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where F i
g = F i ⊗ g and Q = Q ⊗ 1. In the following, we will keep the same notation

(2.7) for the elements of Fg = ⊕3
i=1F

i
g
, one just need to bear in mind that the 1-forms and

functions, which are associated with the elements of Fg, are now g-valued.

2.3 Definition of algebraic operations

We define

[·, ·]h : F i
g ⊗F j

g → F i+j
g , (2.12)

[·, ·, ·]h : F i
g ⊗F j

g ⊗Fk
g → F i+j+k−1

g , (2.13)

which are respectively graded (w.r.t. to the ghost number) antisymmetric bilinear and 3-

linear operations (here obviously, F i
g

= 0 for i < 0 and i > 3). The bilinear one is defined

by the following relations on the elements of Fg:

[ρu, ρv]h = 2ρ[u,v], [ρu, φA]h = 2φ[u,A], [ρu, ψW]h = 2φ[u,W],

[ρu, χa]h = 2χ[u,a], [φA, φB]h = 2φ{A,B}, [φA, ψW]h = −χA·W, (2.14)

where u, v ∈ F0
g
, φA, φB ∈ F1

g
, ψW ∈ F2

g
, χa ∈ F3

g
, and we denoted

{A,B} = ([Aµ, ∂µBν ] + [Bµ, ∂µAν ] + [∂νAµ, Bµ] (2.15)

+[∂νBµ, Aµ] + ∂µ[Aµ, Bν ] + ∂µ[Bµ, Aν ])dxν ,

A · W = [Aµ,Wµ].

The operation (2.13) is defined to be nonzero only when all arguments lie in F1 and for

φA, φB, φC∈ F1 we have:

[φA, φB, φC]h = 2ψ{A,B,C}, (2.16)

where we denoted

{A,B,C} = ([Aµ, [Bµ, Cν ] + [Bµ, [Aµ, Cν ] + [Cµ, [Bµ, Aν ] (2.17)

+[Bµ, [Cµ, Aν ] + [Aµ, [Cµ, Bν ] + [Cµ, [Aµ, Bν ])dxν .

Here, we note that the bilinear operation, defined in this subsection, corresponds to the

lowest orders in α′ of that introduced in [12].

2.4 Homotopy structure of Yang-Mills theory

We claim that the graded antisymmetric multilinear operations, introduced in paragraph

3, satisfy the relations of a homotopic Lie algebra. Namely, the following proposition holds.
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Proposition 2.2. Let a1, a2, a3, b, c ∈ F . Then the following relations hold:

Q[a1, a2]h = [Qa1, a2]h + (−1)na1 [a1,Qa2]h,

Q[a1, a2, a3]h + [Qa1, a2, a3]h + (−1)na1 [a1,Qa2, a3]h

+(−1)na1
+na2 [a1, a2,Qa3]h + [a1, [a2, a3]h]h − [[a1, a2]h, a3]h

−(−1)na1
na2 [a2, [a1, a3]h]h = 0,

[b, [a1, a2, a3]h]
h

= [[b, a1]h , a2, a3]h + (−1)na1
nb [a1, [b, a2]h, a3]h

+(−1)(na1
+na2

)nb [a1, a2, [b, a3]h]h.

[[a1, a2, a3]h , b, c]
h

= 0. (2.18)

The proof is given in section 3.

Denoting d0 = Q, d1 = [·, ·]h, d2 = [·, ·, ·]h, the relations (2.18) together with condition

Q2 = 0 can be summarized in the following way:

D2 = 0, (2.19)

where D = d0 + θd1 + θ2d2 . Here, θ is some formal parameter anticommuting with d0 and

d2. We remind that d0 raises ghost number by 1, d1 leaves it unchanged while d2 lowers

ghost number by 1. Therefore, d0, d2 are odd elements as well as the parameter θ, but d1

is even. Hence, (2.19) gives the following relations:

d2
0 = 0, d0d1 − d0d1 = 0, d1d1 + d0d2 + d2d0 = 0,

d1d2 − d2d1 = 0, d2d2 = 0, (2.20)

which are in agreement with (2.18).

Proposition 2.3. Let φA be the element of F1
g associated with 1-form A = Aµdxµ and ρu

be the element of F0
g associated with Lie algebra-valued function u(x). Then the Yang-Mills

equations for A and its infinitesimal gauge transformations:

∂µFµν + [Aµ, Fµν ] = 0,

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (2.21)

Aµ → Aµ + ǫ(∂µu + [Aµ, u]) (2.22)

can be rewritten as follows:

QφA +
1

2!
[φA, φA]h +

1

3!
[φA, φA, φA]h = 0, (2.23)

φA → φA +
ǫ

2
(Qρu + [φA, ρu]h). (2.24)

Proof. Really, from the definition of the brackets, one can see that:

QφA = 2ψW1
, W1µ = ∂ν∂

νAµ − ∂µ∂νAν ,

[φA, φA]h = 2 · 2!ψW2
, W3µ = [∂νAν , Aµ] + 2[Aν , ∂νAµ] − [Aν , ∂µAν ],

[φA, φA, φA]h = 2 · 3!ψW3
, W3µ = [Aν , [Aν , Aµ]]. (2.25)
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Summing these identities, we see that equation (2.23) is equivalent to

2ψW = 0, W ν = ∂µFµν + [Aµ, Fµν ]. (2.26)

Since we got one-to-one correspondence between the state ψW and 1-form W, we see that

equations (2.21) and (2.23) are equivalent to each other.

Using the formula

Qρu + [φA, ρu]h = 2φdu+[A,u], (2.27)

one obtains that (2.25) coincides with (2.22), which leads to the equivalence of gauge

transformations. This finishes the proof.

3. Proof of homotopy Lie superalgebra relations

In this section, we prove Proposition 2.2.

Let’s start from the first relation:

Q[a1, a2]h = [Qa1, a2]h + (−1)na1 [a1,Qa2]h. (3.1)

We begin from the case when a1 = ρu ∈ F0
g
. Then, for a2 = ρv ∈ F0

g
we have:

Q[ρu, ρv]h = 4φd[u,v] = [ρu, 2φdv ]h + [2φdu, ρv]h = [Qρu, ρv]h + [ρu,Qρv]h. (3.2)

Let a2 = φA ∈ F1
g
. Then

Q[ρu, φA]h = 4φm[u,A]. (3.3)

We know that

m[u,A] = (∂µ∂µ[u,Aν ] − ∂ν∂µ[u,Aµ])dxν . (3.4)

At the same time

[Qρu, φA]h = 2[φdu, φA]h = 4ψY, (3.5)

where

Yν = 2[∂µu, ∂µAν ] + 2[Aµ, ∂µ∂νu] + [∂ν∂µu,Aµ]

+[∂νAµ, ∂µu] + [∂µ∂µu,Aν ] + [∂µAµ, ∂νu] (3.6)

and

[ρu,QφA]h = 4ψ[u,mA]. (3.7)

Summing (3.5) and (3.7), we get (3.3) and, therefore, the relation (3.1) also holds in this

case. The last nontrivial case with a1 = ρu is that when a2 = ψW. We see that

Q[ρu, ψW]h = −2ψdiv[u,W] = −2ψdu·W + 2ψ[u,divW]

= [Qρu, ψW]h + [ρu,QψW]h. (3.8)

– 6 –
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Let’s put a1 = φA ∈ F1
g . Then for a2 = φB ∈ F1

g , we get

Q[φA, φB]h = −2χdiv{A,B}. (3.9)

We find that

div{A,B} = [∂νAµ, ∂µBν ] + [Aµ, ∂µ∂νBν + [∂νBµ, ∂µAν ] +

+[∂ν∂
νBµ, Aµ] + [∂νBµ, ∂νAµ] + ∂µ∂ν([Aµ, Bν ] + [Bµ, Aν ])

= [∂ν∂νAµ − ∂µ∂νAν , Bµ] + [∂ν∂νBµ − ∂µ∂νB
ν , Aµ]

= (mA) ·B + (mB) ·A. (3.10)

This leads to the relation:

−2χdiv{A,B} = −2χ(mA)·B − 2χ(mB)·A = [QφA, φB] − [φA, QφB]. (3.11)

Therefore, (3.1) holds in this case.

It is easy to see that relation (3.1), for the other values of a1 and a2, reduces to trivial

one 0 = 0. Thus, we proved (3.1).

Let’s switch to the proof of the second relation including the graded antisymmetric

3-linear operation:

Q[a1, a2, a3]h + [Qa1, a2, a3]h + (−1)na1 [a1,Qa2, a3]h+ (3.12)

+(−1)na1
+na2 [a1, a2,Qa3]h + [a1, [a2, a3]h]h − [[a1, a2]h, a3]h−

(−1)na1
na2 [a2, [a1, a3]h]h = 0.

It is easy to see that (3.12) is worth proving in the cases, when a1 ∈ F0
g
, a2 ∈ F1

g
, a3 ∈ F1

g

and a1 ∈ F1
g
, a2 ∈ F1

g
, a3 ∈ F1

g
. For the other possible values of a1, a2, a3, the relation

(3.12) reduces to permutations of the above two cases or simple consequences of Jacobi

identity for the Lie algebra g.

So, let’s consider a1 = ρu ∈ F0
g , a2 = φA ∈ F1

g , a3 = φB ∈ F1
g . In this case, (3.12)

reduces to

[Qρu, φA, φB]h + [ρu, [φA, φB]h]h − [[ρu, φA]h, φB]h − [φA, [ρu, φB]h]h = 0 (3.13)

or, rewriting it by means of the expressions for appropriate operations, we get:

ψ{du,A,B} + ψ[u,{A,B}] − ψ{A,[u,B]} − ψ{B,[u,A]} = 0. (3.14)

Therefore, to establish (3.13), one needs to prove:

{du,A,B} + [u, {A,B}] − {A, [u,B]} − {B, [u,A]} = 0. (3.15)

Really,

{A, [u,B]} = (2[Aµ, [∂µu,Bν ]] + 2[Aµ, [u, ∂µBν ]]

−2[∂µAν , [u,Bµ] + [∂νAµ, [u,Bµ]] + [[∂νu,Bµ], Aµ]

+[[u, ∂νBµ], Aµ] − [Aν , [∂
µu,Bµ]] − [Aν , [u, ∂µBµ]]

+[∂µAµ, [u,Bν ]])dxν . (3.16)

– 7 –
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Rearranging the terms and using Jacobi identity, we find that

{A, [u,B]} + {[u,B],A} = ([u, (2[Aµ, ∂µBν ] + 2[Bµ, ∂µAν ] (3.17)

+[∂νAµ, Bµ] + [∂νBµ, Aµ] − [Aν , ∂µBµ] + [∂µAµ, Bν ]] +

+[Aµ, [∂µu,Bν ] + [Bµ, [∂µu,Aν ] + [Aµ, [Bµ, ∂νu] +

[∂µu, [Bµ, Aν ]] + [Bµ, [Aµ, ∂νu]] + [∂µu, [Aµ, Bν ]] dxν = {du,A,B} + [u, {A,B}].

In such a way we proved (3.13).

Let’s consider the case, when a1 = φA ∈ F1
g , a2 = φB ∈ F1

g , a3 = φC ∈ F1
g . For this

choice of variables, (3.12) has the following form:

Q[φA, φB, φC]h + [φA, [φB, φC]h]h − [[φA, φB]h, φC]h + [φB, [φA, φC]h]h = 0 (3.18)

or, on the level of differential forms,

div{A,B,C} + A · {B,C} + C · {A,B} + B · {C,A} = 0. (3.19)

To prove (3.19), we write the expression for C · {A,B}:

C · {A,B} = 2[Cν , [Aµ, ∂µBν ]] − 2[Cν , [∂µAν , Bµ]

+2[Cν , [∂νAµ, Bµ]] + [Cν , [∂νBµ, Aµ]] − [Cν , [Aν , ∂µBµ]] + [Cν , [∂µAµ, Bν ]]

= −([Cν , [∂µBν , Aµ]] + [Cν , [∂µAν , Bµ]]

+[∂µBν , [C
ν , Aµ]] + [∂µAν , [C

ν , Bµ]] + [Cν, [Aν , ∂µBµ]]

+[Cν , [Bν , ∂µAµ]]) + [Aµ, [Cν , ∂µBν ]] + [Bµ, [Cν , ∂µAν ]]

−[Cµ, [Aν , ∂µBν ]] − [Cµ, [Bν , ∂µAν ]]. (3.20)

In order to obtain the last equality, we have used Jacobi identity from g. Now, we observe

that adding to (3.20) its cyclic permutations, that is A ·{B,C} and B ·{A,C}, one obtains

that the sum of cyclic permutations of terms in circle brackets (see last equality of (3.20))

gives div{A,B,C} while all other terms cancel. This proves relation (3.19) and, therefore,

(3.18). Hence we proved (3.12).

The relations left are:

[b, [a1, a2, a3]h]
h

= [[b, a1]h, a2, a3]h + (−1)na1
nb [a1, [b, a2]h, a3]h

+(−1)(na1
+na2

)nb [a1, a2, [b, a3]h]h,

[[a1, a2, a3]h , b, c]
h

= 0. (3.21)

However to prove the first one, it is easy to see, that this relation is nontrivial only, when

b ∈ F0
g and ai ∈ F1

g . Therefore, it becomes a consequence of Jacobi identity from g. The

second one is trivial since the 3-linear operation takes values in F2
g and it is zero for any

argument lying in F2
g
.

Thus, Proposition 2.2. is proved.

– 8 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
8

4. Conclusion

In this paper, we have shown that the equations of motion of Yang-Mills theory possess

a formal Maurer-Cartan formulation. We have noted that the bilinear operation in the

homotopy Lie superalgebra which we considered here, corresponds to the lowest orders in

α′ of that introduced in [12]. One might expect, as we already mentioned in [12], that

extending our formalism to all α′ corrections, we would be able to reproduce the equations

of motion corresponding to nonabelian Born-Infeld theory which is the conformal invariance

condition of the associated sigma model.

The same approach should be appropriate for gravity: in papers [12, 15, 16] motivated

by the structures from closed SFT [11], we constructed the bilinear operations on the

corresponding operators which should be associated with some homotopy Lie algebra. In

this case, the first order formalism, introduced in [14, 16], looks very promising since

the associated CFT is the simplest possible and the geometric context is undestroyed.

Therefore, we are looking forward to introduce the homotopy Lie algebra structure in

Einstein equations.
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